- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Stergiou, Nikolaos (3)
-
Amazeen, Polemnia G (1)
-
Brink, Kolby J (1)
-
Faria, Aurélio (1)
-
Farjad, Sheikh Muhammad (1)
-
Gabriel, Ronaldo (1)
-
Gama, Jorge (1)
-
Kim, Seung Kyeom (1)
-
Likens, Aaron D (1)
-
Lipsitz, ed., Lewis_A (1)
-
Mastorakis, Spyridon (1)
-
Sommerfeld, Joel H (1)
-
Sousa, Tiago (1)
-
Vaz, João_R (1)
-
Wijesooriya, Pubudu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The seemingly straightforward task of tying one’s shoes requires a sophisticated interplay of joints, muscles, and neural pathways, posing a formidable challenge for researchers studying the intricacies of coordination. A widely accepted framework for measuring coordinated behavior is the Haken–Kelso–Bunz (HKB) model. However, a significant limitation of this model is its lack of accounting for the diverse variability structures inherent in the coordinated systems it frequently models. Variability is a pervasive phenomenon across various biological and physical systems, and it changes in healthy adults, older adults, and pathological populations. Here, we show, both empirically and with simulations, that manipulating the variability in coordinated movements significantly impacts the ability to change coordination patterns—a fundamental feature of the HKB model. Our results demonstrate that synchronized bimanual coordination, mirroring a state of healthy variability, instigates earlier transitions of coordinated movements compared to other variability conditions. This suggests a heightened adaptability when movements possess a healthy variability. We anticipate our study to show the necessity of adapting the HKB model to encompass variability, particularly in predictive applications such as neuroimaging, cognition, skill development, biomechanics, and beyond.more » « less
-
Faria, Aurélio; Sousa, Tiago; Vaz, João_R; Gabriel, Ronaldo; Gama, Jorge; Stergiou, Nikolaos; Lipsitz, ed., Lewis_A (, The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences)Abstract BackgroundPhysical decline due to aging has been associated with the risk of falls. Minimum toe clearance (MTC) is a gait parameter that might play a role in the mechanism of tripping and falling. However, it is unclear if there are any sex-related effects regarding MTC as people age. The present study investigated if there are sex-related differences in MTC in older active adults. MethodsTwenty-three females and 23 males (F: 65.5 ± 4.8 years; M: 61.9 ± 5.2 years) walked on a treadmill at a preferred walking speed, while kinematic data were obtained at a sampling frequency of 100 Hz and up-sampled to 120 and 240 Hz. MTC was calculated from the kinematics data and evaluated concerning its magnitude (ie, MTC and MTC/leg length), the time between left/right MTC (ie, T-MTC), amount of variability (ie, coefficient of variation [CV] and coefficient of variation modified [CVm]), and temporal structure of variability, that is, the complexity of the time series (ie, MTC α, T-MTC α). ResultsNo sex effects were found for MTC/leg length, for the amount of variability (ie, CV and CVm), and for the complexity of the time series (MTC α, T-MTC α). However, females exhibited significantly lower MTC and T-MTC after adjusting for walking speed, mass, and age as covariates. ConclusionsThe reduced MTC in females suggests a potential sex-related disparity in the risk of tripping and falling among active older adults.more » « less
-
Wijesooriya, Pubudu; Farjad, Sheikh Muhammad; Stergiou, Nikolaos; Mastorakis, Spyridon (, IEEE International Conference on Communications workshops)
An official website of the United States government

Full Text Available